

t

C

DataObjx L.L.C.
Website: www.dataobjx.ne
DataObjx L.L.C.

DataObjx L.L.C.
Meriden, CT USA

Office: 860/919-2536

Email: administrator@dataobjx.net

Website: www.dataobjx.net

Do you have an
article to
contribute?

Contact DataObjx
to find out how.

Need More Answers?

lick here to access the Code
Charge Studio Forums
AUGUST 2004 VOLUME NO. 1 ISSUE NO. 1

In This Issue

Formatting Row Colors

This article explains one method to dynamically alter row colors on your grid based on a
value in the database.

Dynamic Style Sheets

This article shows how you can dynamically change the style sheet based on user
preferences.

Building CCS Components

This article explains how to build CCS components to speed your application development.

Building A Document Management System – Part 1

The first in a 3 part series, this article builds the foundation for our CCS Document
Management System.

Tips and Tricks

Tips and Tricks are interspersed throughout the magazine.

http://forums.codecharge.com/

Editors Comments
Viewpoint...
Welcome to the first issue of the CCS Developer Magazine.

We’ve been busy trying to create the first magazine dedicated to Code Charge Studio Developers and we hope you enjoy
our first issue.

In this issue, we begin with a number of articles geared toward making you a better CCS developer and hopefully, making
your products better as well.

Fortunately for us, CCS can generate code in many languages, however our first edition primarily covers .ASP code. We
apologize for this, but like anything new, one has to start somewhere.

You will notice that there are requests everywhere in this issue asking for your input and hopefully, you will respond with
applications and techniques that you’ve created or discovered.

If you program in PHP, .NET, PERL or any of the other languages that CCS can generate, and you’re interested in supporting
the CCS community, send us your information, code and project files so we can publish them along with our articles.

This introductory issue is free, but in order to continue publishing CCS Developer Magazine, we need your support and
your subscription.

Our goal while creating this informative magazine was “if this issue saves you an hour or more, we’ll have done our job
well”. In this issue, we show you how to integrate WYSIWYG editors into you applications, build a re-useable file upload
wizard that allows you to upload files directly into your database as well as a number of useful techniques to aid you along
the way to building better web applications with CodeCharge Studio.

The CCS Jobs Board is open for business, so if you have a project you want other CCS Developers to bid on and fulfill, this
is the place to advertise it. A more advanced CCS Job Board is nearly complete and will go live soon enhancing your project
seeking experience.

In addition, we’ll be launching the CCS Project Marketplace next week that will allow you to sell your CCS Project Source
Code and/or Applications on-line.

We will also be providing an article on integrating the ASP Report Wizard by ASPWebSolution with your CodeCharge Studio
Projects.

We’ll continue to establish relationships with third-party vendors that offer components or applications that can be
integrated with CodeCharge Studio and we’re interested in knowing what your interests are. To that end we’ve started to
offer you more user preferences. These will be expanded to include the languages you program in and so on in order help
you have a more enjoyable programming experience.

Your user preferences will also allow the CCS Jobs Board to interact with you by matching project programming languages,
database and other requirements with your capabilities so you’ll be notified when a project meeting your capabilities has
been advertised.

We have space allocated to advertise commercial products you have created with CCS, so contact us to utilize this space if
you have a CCS products you want people to know about.

We’re also interested in hearing from you regarding the types of articles you’d like to see in up-coming issues of CCS
Developer Magazine. Don’t hesitate to email us at administrator@dataobjx.net.

To subscribe, simply login and click the subscribe link contained on the CCS Developer Magazine landing page.

We hope that you find the articles within this issue of interest. Moreover, we hope that some of the techniques you learn
from this issue help you in developing your application for the CodeCharge Studio Developer Award. Submissions are
underway now. Results for the competition will be announced on October 1, 2004.

We hope you enjoy reading CCS Developer Magazine as much as we did creating it – see you on-line.

Best Regards,

Martin Hamilton
www.dataobjx.net

http://www.aspwebsolution.com/

CCS Developer Page 1

R

• "
O
r

•
Y
a

• a
"
i
s
e.g., (No Risk).

T

D
In

Update your user
preferences as the CCS
Job Board functionality
increases – increasing you
chances of getting
projects.

Get Noticed.

Are You A Service
Provider?

Bid on projects posted on
the CCS Jobs Board.

Advertise your business or
individual profile in CCS
Developer Magazine.

Get your project
advertised in CCS
Developer Magazine.

Advertise your project on
the CCS Job Board and
wait for the bids to come
to you.

Pick the winning bid and
get your project
underway.

Do You Have A
Project You Need
Completed?

Language: .ASP
There are many reasons why
we would like various records
to be displayed with a different
background color based on a
data value.

Why would you want to do
this?

One every-day example is in
Outlook type applications
where we want the article or
message title to appear one
way if not read and perhaps in
a different color if it has been
read.

This makes it easier to

determine which

hen, click on the “Cache.asp”

ynamic Style She
corporating Dynamic CC

.RedDataTD { background-color:
 border-left: 1px solid #
 border-top: 1px solid #
.OrangeDataTD { background-col
 border-left: 1px solid #
 border-top: 1px solid #
.YellowDataTD { background-colo
 border-left: 1px solid #
 border-top: 1px solid #
</style>
articles/messages you have
yet to read.

In another example, lets say
you have a record set
comprised of 4 records.

The record-set has a field
called "risk".

Record 1 has a "risk" = 1
Record 2 has a "risk" = 2
Record 3 has a "risk" = 3
Record 4 has a "risk" = NULL

When a row is written to the
grid, we want any records with
a
• a "risk" of 1 to be in

ets
S Style Sheets

place to put our code.

#FF0000; color: #FFFFFF; font-size: 13px
C6C7BD; border-right: 1px solid #EFEBE7
C6C7BD; border-bottom: 1px solid #EFEB
or: #FF9900; color: #000000; font-size: 1
C6C7BD; border-right: 1px solid #EFEBE7
C6C7BD; border-bottom: 1px solid #EFEB
r: #FFFF00; color: #000000; font-size: 13
C6C7BD; border-right: 1px solid #EFEBE7
C6C7BD; border-bottom: 1px solid #EFEB
ed (High risk)

risk" of 2 to be in
range. (Medium

isk)

"risk" of 3 to be in
ellow. (Low Risk)
nd

ny records with a
risk" of NULL to be
n whatever the
tandard theme is...
Formatting Row Colors Dynamically.
Changing row color according to database values.
;
;
E7 }
3px;
;
E7 }
px;
;
E7 }

Continued on page 3
Ever wondered how to change
the CCS Themes for your site
‘on the fly’?

In this article, we’ll show you
how it’s done with a minimum
of code.

Locate the Get Content()
Function

Open your CCS project and
then double click on “Common
Files”.
tab.

Next, locate the block of code shown in DSS – Figure 1.

DSS - Figure 1

 Public Default Property Get Content()

 If NOT IsOpen Then
 mContent = GetFileContent(mFSO, mName)
 IsOpen = True
 End If

 Content = mContent

 End Property

We’ve chosen the ‘Get Content()’ routine as the most appropriate
FRCD – Figure 1
<style>

“Unfortunately, it often
doesn’t matter whether you
are a small to medium sized
business - or for that matter
a large organization… every
organization needs or wants
a centralized point where-in
documents can be stored and
the ‘versions’ of those
documents ‘controlled’.”
Continued on page 5

“Yes Software anticipated the
developers desire to create
their own components and
therefore CCS has the ability
to detect your component
directory and your custom
components.
Your components are then
displayed within the CCS
Toolbar, just like regular CCS
components”

CCS Developer

CCS Components: The CCDLookup Component
Building A CCS Component

In this article, we’ll see how we can create a CCS Component that will quickly write out the
CCDLookup function, a commonly used function.

This same technique can be used to create your own CCS Components to further increase your
speed of development.

Yes Software anticipated the developers desire to create their own components and therefore
CCS has the ability to detect your component directory and your custom components. Your
components are then displayed within the CCS toolbar, just like regular CCS components.

Step 1 – Create The ‘Custom’ Directories

We’re going to add a sub-directory to hold the files we are going to create. The name that we
use to create that directory is the name that will appear as a tab on the toolbar. Therefore,
we’re going to create a relatively ‘short’ name that has a minimum of characters.

Locate the default Code Charge Studio Directory. The default directory is;
c:\program files\codechargestudio\

Next, locate the \Components sub-directory.

[NOTE: If you changed the default directory when you installed Code Charge Studio, locate that
directory accordingly].

Under the \Components directory, locate the “\ToolBox\” directory. This is where the Code
Charge Studio component files are held.
[c:\program files\codechargestudio\Components\Toolbox\]

 Create a sub-directory on the \ToolBar\ branch called “Custom”.

Naturally, feel free to name the directory as you see fit. But keep it short and if you do change
it, use your directory name in place of the one used in this article (“Custom”).

Now, select the “\Custom” directory and create two sub-directories under it. Name one of the
sub-directories “\icon” and the other sub-directory “\js”.

Step 2 – Create The Custom.xml File

When Code Charge Studio initializes, it reads the .XML files in the “Toolbox” directory and uses
the information in the .XML files to locate the component_name.xml files.

The “\js” sub-directory will hold the
JavaScript files that CCS will use to
produce the code that the component
represents.

We need to create the .XML file for the “Custom” directory that we just created to tell CCS what
directory to look into - to load the component files that we’re about to create.

Open Notepad and add the code shown in CSSC-Figure 1.

CSSC – Figure 1 Custom.xml

<item name="Custom" number="5" hint="Development Extensions" folder="Custom"
icon="Custom.ico"/>

Save this file as custom.xml in the “Toolbox” directory.

Before moving on, we have two (2) parts of the ‘code’ to look at.

 Share Your
Knowledge

We’re looking for
developers using Code
Charge Studio to
contribute articles of
interest to the readers
of CCS Developer
Magazine.

If you can contribute an
article, tip, trick or even
a routine or two – we
are interested in
hearing from you.

Click here to send an
email to DataObjx and
let us know what you
can contribute to CCS
Developer Magazine.

The “\icon” sub-directory will hold the
.ico (icon) files that will be displayed on
the “\Custom” tab within the toolbox.

Continued on page 4

Page 2

Language: Misc

Contact DataObjx now to
have your article published
in CCS Developer
Magazine.

• tips or tricks,
• developed a CCS

application,
• integrated a third-

party product with
CCS

We’d like to hear from you.

You can write for CCS
Developer Magazine!

If you have

CCS Developer Page 3

.

W
s
e
F

Y
s
s

Add the styles to the HTML page that contains the grid (default.html). T
t
t

W
t
N

C

O
e
c
“

Y
A
C
U

A
c
p

W
si
en
co
fo
g
an

In
g
C
si

 …Continued from page 1

e’ve created some sample
tyles to accommodate our
xample. (Refer to FRCD –
igure 1)

ou will need to paste these
tyles before the </head>
ection within the HTML page.

his article covers one of the
echniques used to achieve
his using Code Charge Studio.

e will use the “Products”
able that comes with the
orthwind Database.

reate A New Project

pen a new project. For our
xample application, we have
alled the application;

RowColors”.

our
dvertisement
ould Be Taking
p This Space.

dvertise your
ompany or
roject here.

e’re going to choose a
mple routine to
capsulate within our
mponent so that we can
cus on the mechanics of
etting your component up
d running.

 our next issue, we’re
oing to build a
omponent Maker to really
mplify the process.

Set-up The Database Connection

Set up a connection to the Northwind.mdb database that installs by default when you install
Microsoft Access.

Create The Default Page

Now, add a new page called “default”.

Add The Styles
Add The Products Grid

Next, add a Grid to display the Products table. When prompted to select a table, select the Products

table. We will display two (2) fields from the Products table, namely the Product Name field and the
number of Units In Stock field.

What we want is to display any products that have

• 5 or less units in stock to be displayed with a red background;

• products that have 20 or less units in stock to be displayed with an orange background;

• products that have 21-50 units in stock to be displayed with a yellow background, and

• all products with 51 or more units in stock to be displayed with the normal CCS Style.

 In our example we only use one row rather than alternating rows.

Formatting Row Colors Dynamically
Changing row color according to database values, continued…
FRCD – Figure 2
FRCD – Figure 3
Continued on page 7

C Page 4

 Tip
When you attempt to write
a component that is going
to write out .asp, .net,
.php, etc. there are a few
rules that you have to
abide by or you will get an
error when you attempt to
paste the code into the
HTML of your page.

I

“

b

d

i

c

(

A

b

p

p

with a \” (backslash – quote)

First, notice the part that says [number=”5”]. This is telling Code Charge Studio that this will
represent the 5th tab. You may need to change this number to a “4” or perhaps a “6”, depending
on how many other component tabs you currently have.

How do you know what number to use?

It’s pretty logical once you look at it. Open the Builders.XML file and look at the number it has… a
one (1). If you look at your Toolbox within Code Charge Studio, you’ll notice that the “Builders”
tab is indeed the first tab in the Toolbox.

Now, open the Forms.XML file and you’ll notice that its number is two (2). Again, it’s the second
tab in the Toolbox.

We could go on opening and reading each file – [HTML.XML is number three (3)], but we don’t
need to now that we understand how CCS is using “number=”#” within these files.

Open Code Charge Studio and count the number of tabs you have in your Toolbox. For instance,
if there are only three tabs, you’ll want to set the number in your “Custom.XML” file to four (4).

The second thing we need to notice in the file is the [icon="Custom.ico"] part. This is telling CCS
what icon to display in the Toolbox tab. Locate an icon of your choice to represent your “Custom”
tab. If you can’t find one right away, you can use the one supplied in the source code for this
article.

To sum up, you’ve created a .XML file and you have saved it to the Toolbox directory. In addition,
you’ve copied an icon to the Toolbox directory and you’ve modified the code in the .XML file
accordingly.

To see your “Custom” tab appear, exit Code Charge Studio if you already have it open and then
re-start Code Charge Studio.

If everything is correct, you should see your “Custom” tab appearing in the Toolbox (within CCS).

Of course, we haven’t added any components to our “\Custom” directory, so if you click on the tab
– it’s empty.

Let’s create our first component….
 Tips & Tricks

It can save a lot of typing.”

But you can still write native
language routines (.asp, .net,
.php, etc…) paste them into the
bottom of your HTML page, then
cut and paste them into the
events (code) page.

“When you try to use a
component in an events (code)
page, CCS will not let
you, instead providing a warning
that says, “Toolbox is only
available in the design or HTML
mode.”

Creating The CCDLookUp.XML File

Now we’re ready to create our CCDLookUp.XML file. This file will contain the code

Open Notepad and insert the following code:

CSSC – Figure 2 CCDLookUp.XML

<?xml version="1.0" encoding="ISO-8859-1"?>
<item name="CCSLookUp" number="1" hint="Perform a CCS LookUp"
script="..\..\..\Components\ToolBox\custom\js\CCDLookUp.js"
img="..\..\..\Components\ToolBox\custom\icon\CCDLookUp.ico"/>

Remove any line breaks on the second (2nd) line (<item name…/>) that may result from
a copy/paste, it should be one line.

Save this file to the “\Custom” sub-directory as “CCDLookUp.XML”. Save an icon called
“CCDLookUp.ico” to the \Custom\icon directory. If you don’t have an icon on hand you can
CCS Components: The CCDLookup Component
Building A CCS Component, continued…

 Tip

n JavaScript

Placing a ..\ (dot dot

ackslash) in front of a

irectory path causes the

nternet server to traverse

‘Up’ one directory from the

urrent directory… for each

dot dot backslash) Typed .

lso, \n (backslash followed

y the letter “n”) tells the

asteHTML function to

erform a carriage return.”
A Quote has to be replaced
CS Developer
 Continued on page 9

 Page 5

Advertise Your CCS
Project/Product
Here.

• Popup and
Menu
Generator,

• Free Sample
Downloads!

IGI Designs
Global
Applications

Hosting the Global
Develop forum that
discusses ways of
integrating CodeCharge
and Flash technology,
Tips, tricks and more.

 This routine is responsible for getting the content that will be streamed to the users browser.

We’re going to intercept that code and replace the styles dynamically.

Add the code between the “Dynamic Theme Code Begins …. Ends as shown in DSS – Figure 2.

DSS – Figure 2

Public Default Property Get Content()

 If NOT IsOpen Then

 mContent = GetFileContent(mFSO, mName)

'DYNAMIC THEME CODE BEGINS
'DynamicTheme() Function located in Common.asp

 mContent = DynamicTheme(mContent)

'DYNAMIC THEME CODE ENDS

 IsOpen = True

 End If

 Content = mContent

 End Property

Create The Dynamic Theme Function

Now, we’re going to create the DynamicTheme() function and we’re going to add it to the bottom
of Common.asp.

From the tab, click on “Common.asp” then scroll all the way to the bottom of the page and add
the following block of code….

DSS – Figure 3
CONST DefalutCSSTheme = "Olive"

CONST DefaultCSSPath = """/Themes/Olive/Style.css"""

'When The User Logs In, Get the ThemeName and CSSPath from the User preference
'or company table if you have one.

Function DynamicTheme(vContent)
Dim sThemeName
Dim sNewThemeName
Dim sContent

 If Len(vContent) = 0 Then Exit Function

 sContent = vContent
 sThemeName = "class=""" & DefalutCSSTheme
 sNewThemeName = "class=""" & Session("CompanyThemeName")

 'First, Replace the path to the default style sheet.
 sContent = Replace(sContent, DefaultCSSPath, Session("CompanyCSSPath"))

 'Next, Replace all references to the name of the old styles to the

‘names of the new styles
 sContent = Replace(sContent, sThemeName, sNewThemeName)

 DynamicTheme = sContent
End Function

Dynamic Style Sheets
Incorporating Dynamic CCS Style Sheets, continued…
CCS Developer

Continued on page 6
“Notwithstanding our need
to have adequate
programming skills to
create the application, we
also need to be concerned
about how the user will
interact with the system.”
Developer Forum

 P

Add the following lines of code to the Session variables section
of the code.

Remove any line breaks so that both lines are on one line
each.

How it works…

Essentially, the routines work like this;

When the user logs in, their ‘theme preference’ is determined
and the session variable for the theme-name and theme-path
are written to the users session.

Then, as the page begins to load, the Get Content property is
executed and the HTML output is rendered into the “mContent”
variable.

However, before the routine is finished – we’ve intercepted the
code and performed a search and replace on the necessary
tags.

Our modified output is then sent to the users browser and the
styles are presented according to the preferences they saved.

Session("CompanyCSSPath")=
"http://www.dataobjx.net/Themes/DeepWater/Style.css"

the Theme Name can conflict with content on the page.

In this example, we’re using the “Olive” theme. If the website
contained information about a restaurants menu, the word
“Olive” could be replaced by mistake if we didn’t do this. In
other words, you couldn’t simply perform a search and replace
on the word olive… we need to perform a search and replace
on the phrase “class=”Olive…” instead.

Also, we’ve used a full http address on the style sheet because
if you decide that you will host an application, the company
purchasing time on the application may want their own style
sheet to be used.
About The Dynamic Theme Function

When the page content is loaded into the Get Content()
[cache.asp] property executes it sends that content to our
DynamicTheme function.

It then performs a ‘Search and Replace’ on our theme
path and theme name within ‘vContent’ and when finished
it returns the modified code back to the Get Content
method.

[mContent = DynamicTheme(mContent)]

Defining The Constants

There are two constants defined.

One for the theme name and one for the stylesheet name.

When we develop a CCS application, we tend to use one
style. However, that may not be the style the user
prefers.

Still, we have to tell the application what style name to
replace and what style sheet (.css) to replace when the
function is called.

Since this rarely changes for your entire project, the
DefaultCCSTheme and the DefaultCCSPath have been
defined as constants.

Why?

Because when you publish your site up to the internet,
you have a base theme that you used when you built the
pages.

Thus, we’ll define these as Constants. However, if you
create another project an use a different theme and style
sheet, don’t forget to replace the constant values
appropriately.

Getting The Users Preferred Theme

Now that we have the majority of code in place, we need
to amend the login code.

For the purpose of this example, we’re going to assume
that we are going to allow the user to select and save to
the users table, their preferred theme.

Therefore, we’re going to add a field to the Users table
called “Preferred_Theme” and “Preferred_Style_Sheet”
then we’re going to modify the Function
CCLoginUser(Login, Password) accordingly.

First, add the two fields to your users table.

Next, locate the CCLoginUser function in Common.asp and
add the field to your select statement…

SQL = “SELECT users.user_id Preferred_Theme,
Preferred_Style_Sheet….

Next, we need to create the session variable used by the
DynamicTheme() function.
age 6
CCS Developer

Session("CompanyThemeName") = "DeepWater"

d…

We are creating two fields because there may be times where
Dynamic Style Sheets
Incorporating Dynamic CCS Style Sheets, continue
Get your database
online with 1 line
of code!

 Create reports from virtually any
data source - Text, Oracle, Access, SQL Server, MySQL,
Sybase etc.

Create virtually any kind of report - tabular, columnar,
summary, master-detail & hierarchical, charts & graphs etc.
and use extensive formatting and interactivity options to
empower end users with business information.

Save as much as 95% of time required for creating, deploying
and maintaining web reporting applications.

See the article on integrating reports with applications written
with CodeCharge Studio in the next issue of CCS Developer
Magazine.

CCS Developer P

Dynamic Style Sheets
Incorporating Dynamic CCS Style Sheets, continued…

'Custom Code @10-73254650
' -------------------------
' Write your own code here.
Dim NumUnitsInStock
Dim sStyle

 sStyle = "OliveDataTD" 'Default Style

 NumUnitsInStock = Products.datasource.recordset.fields("UnitsInStock")

 'handle any null values
 If Len(NumUnitsInStock) = 0 Then NumUnitsInStock = 0

 If NumUnitsInStock < 6 Then
 sStyle = "RedDataTD"
 ElseIf NumUnitsInStock > 5 And NumUnitsInStock < 21 Then
 sStyle = "OrangeDataTD"
 ElseIf NumUnitsInStock > 20 And NumUnitsInStock < 51 Then
 sStyle = "YellowDataTD"
 End If

 Products.Hidden1.value = sStyle
' -------------------------
'End Custom Code

End Function 'Close Products_Hidden1_BeforeShow @8-54C34B28

GoToDon.com Consulting
provides quality application
design, development and
consulting services related to
CodeCharge Studio, ASP, PHP,
javaScript, mySQL, Access, MS
SQL Server or Visual Basic to
name a few.

Free site memberships provide
a way to submit questions and
get personalized assistance to
solve the toughest problems.

A searchable knowledgebase,
numerous technical articles,
downloadable example apps,
and links to other related
information sources are also
provided at no cost.

Paid consulting services are
available at very reasonable

m

h

Add A Hidden Field

Next, we’re going to add a hidden field in front of the Products Label, (See FRCD – Figure 3).

Select the Hidden1 field component and from the Properties select the ‘Events’ tab.

Add Code To The Before Show Event

Then right click on ‘Before Show’ and add click ‘Add Code’.

We’re going to place some code into the before show event that will cause a style name to be written into the Hidden1 field for each
record retrieved.

The code is displayed in FRCD - Figure 4.

Step 3

Email:
mailto:ccbth@gotodon.com

hourly rate, whether it's basic
design help or complete syste
development that you require.

http://www.gotodon.com/ccbt

Now we simply need to modify the HTML page by replacing the class=”OliveDataTD” to class=”{hidden1}”.

The original code will appear similar to that shown in FRCD – Figure 5

FRCD – Figure 5

 <!-- BEGIN Row -->
 <tr>

 <input style="WIDTH: 65px; HEIGHT: 22px" type="hidden" size="8" value="{Hidden1}" name="{Hidden1_Name}

 <td class="OliveDataTD">{ProductName} </td>

 <td class=" OliveDataTD " width="1%">{UnitsInStock} </td>

 </tr>

 <!-- END Row -->

Continued
age 7
FRCD – Figure 4
Function Products_Hidden1_BeforeShow() 'Products_Hidden1_BeforeShow @8-790308A7
">

 on page 8

CCS Developer Page 8

Dynamic Style Sheets

 Incorporating Dynamic CCS Style Sheets, continued…
Now, replace the class=”OlveDataTD” with class=”{hidden1}” as shown in FRCD – Figure 6;

FRCD – Figure 6

 <!-- BEGIN Row -->

 <tr>

 <input style="WIDTH: 65px; HEIGHT: 22px" type="hidden" size="8" value="{Hidden1}" name="{Hidden1_Name}">

 <td class="{Hidden1}">{ProductName} </td>

 <td class="{Hidden1}" width="1%">{UnitsInStock} </td>

 </tr>

 <!-- END Row -->

Now with that done, re-generate the page and save your work; then open the page in your browser.

The result should appear similar to that shown in the FRCD – Figure 7.
FRCD – Figure 7

Admittedly the colors we’ve used in the example are a bit extreme, but the example is clear.

Using this technique you can allow your users to evaluate the status of a product rapidly,
simply by looking at the color of the row.

Now that you know how easy it is to provide this functionality, you may see occasion to use it
in one of your own projects.

Do your visitors need to find your nearest business location ?
Need a 'drop-in' application that would work no matter how many dealers
php Dealer Locator is a complete PHP application to allow your visitors to
dealer, store, or location based on their zipcode. Help your website visito
location for your products or services with this quick and easy web based
Your website visitors will be able to search by name, distance, and zip cod
locations.

URL: http://phpdealerlocator.yourphppro.com/
Demo Area: http://phpdealerlocator.yourphppro.com/demo/admin/
Demo Area: http://phpdealerlocator.yourphppro.com/demo/

Need a Dealer Locator or Store Locator application for your web site?
/stores you have ?
search for the nearest
rs find the nearest
php application.
e to find the closest

http://phpdealerlocator.yourphppro.com/

CCS Developer Page 9

CCS Components: The CCDLookup Component
Building A CCS Component, continued…

Continued from page 4….
use the icon that comes with the source code for this article.

Before we continue, let’s have a look at the code within this .XML file.

There are 5 parts of the code we should look at and understand. Refer to CCSC – Figure 3.

CCSC – Figure 3

item name="CCSLookUp" Tells CCS the name of the componet

number="1" Tells CCS the sequence number or sort order that the
component will appear within your “Custom” tab.

hint="Perform a CCS LookUp" Tells CCS what ‘tooltip’ should appear when you hover your
mouse over the component.

script="..\..\..\Components\ToolBox\custom\js\CCDLookUp.js" Tells CCS where the code is that will be ‘generated’ by CCS
when you work with that component.

img="..\..\..\Components\ToolBox\custom\icon\js.ico" Tells CCS what icon to display to represent this component.

The ‘script’ and ‘image’ parts of the code have a number of “..\ - dot dot backslashes” at the front of the line. Essentially each
– dot dot backslash (..\) tells the internet server to traverse up one directory for each – dot dot backslash.

Don’t worry about those for the moment however, just leave them as they are and they will work as anticipated.

Notice that the ‘script’ line tells CCS where to locate the CCDLookUp.js file – this is the file that contains the code that CCS will
paste into our application when we use the component.

So far, we’ve told CCS to create a tab called “Custom” in the Toolbox. Then we’ve told CCS to display an icon to represent a

component called CCDLookUp and to make it the first component within the tab.

We’ve also told it what icon to use.

Create The Component

Now we’re ready to create the CCDLookUp.js file. This is the file that contains the code that will
be written to your project file when the component is selected.

Open a new instance of Notepad, paste the following code into it and save the file to the
“\Custom\js” directory as CCDLookUp.js.

CCSC – Figure 4 CCDLookUp.js

#include ..\..\..\Dialogs\Common\Common.js

var ccObject = ccPage.Project;

pasteHTML("<!-- \n '********** ==> Routine Begins <== **********\n'This routine is used
to derive a value from a table in the database. \nDim sResult \nDim lngID\n lngID =
Request.QueryString(\"id\")\n If Len(lngID) > 0 Then \n sResult =
CCDLookup(\"FIELD_NAME\", \"TABLE_NAME\", \"id=\" & CCToSQL(lngID, \"Integer\"),
DBIntranet)\n End If\nFORMNAME.LABEL.value = sResult\n'********** ==> Routine Ends
<== ********** \n//--> \n");

The above code is comprised of three (3) lines. The third (3rd) line is wrapping into many lines,
but it is actually only one line of code, therefore make sure that the line beginning with
pasteHTML is all on one line.

Now we’ll save the files, but don’t close them down… we’re going to refer to them in a moment.

Save this file to the “\js” sub-directory as “CCDLookUp.js”.
So you should now have
one file called
CCDLookUp.XLS in the
“\Custom” directory and
one file called
“CCDLookUp.js” in the
“\Custom\js” sub-directory.

And you should have an
icon in the \Custom\icon
directory called
CCDLookUp.ico.

If you have found a
different icon or want to
use a different name for
the icon make sure you
edit the following line in
the CCDLookUp.XLS file…

img="..\..\..\Components\
ToolBox\custom\icon\your_
icon_file_name.ico"

replacing the name of the
your_icon_file_name.ico
file accordingly.
Continued on page 11

 Page 10

Building A Document Management System
FEATURED ARTICLE: Part 1 of a three part series… Data
In this series, we’re going to build a document
management system.

Initially, we’ll build the framework for the application.
Then we’ll add additional functionality like allowing users
to check-in and check-out documents, and finally, we’ll
add finishing touches to the application.

During this series of articles, we’ll include many of the
features and functionality that we discuss in other articles
in future issues of CCS Developer Magazine.

Document Management
System Part 1

Document Managem
System Part 2

In this segment, we will;

• Address Methodology
• Create the database

tables
• Create the reusable

‘Upload Wizard’

In this segment, we w

• Incorporate u
capability, st
binary file to
database tab

• Refine the ‘U
Wizard’

• Create the m
the interface

Why Build A Document Management System?

As developers we’re generally used to such systems to
handle revision control of source code.

But if we look around us, the current business that we
work for struggles with ‘change control procedures’. It’s
an every day fact of life for small to medium sized
businesses.

Large organization often purchase document
ent Document Management
System Part 3

ill;

pload
oring the
 the
le.
pload

enu to drive
.

In this segment, we will;

• Create the form to allow
users to allocate
documents to specific
users.

• Allow the owner of the
document to control the
actions users can take
with the document
including ‘check-in’ and
‘check-out’ capability.
management systems that ultimately cost tens of thousands of dollars. Many of these products are aimed at vertical
markets such as the finance industry, medical industry and so forth.

Unfortunately, it often doesn’t matter whether you are a small to medium sized business - or for that matter a large
organization… every organization needs or wants a centralized point where-in documents can be stored and the ‘versions’ of
those documents ‘controlled’. In addition, with today’s Internet access, many organizations want their customers to be able
to download the latest forms or documents and they want to do it as efficiently as possible.

The system we’ll build in this series will enable you to provide your organization or users with these capabilities, along with
the control processes they’ll need to keep things current.

What Is A Document Management System?

There are many types of Document Management Systems out there. Each company producing these systems has their own
definition depending on the features their application supports.

Many of the desktop versions provide hypertext capability, document imaging and other high end features. Much of the
technology that enables these desktop systems to do the things they do involves COM/DLL components and are outside of
the scope of this article.

For the purpose of this series, our fundamental document management system should enable authorized users to;

• Upload and download documents or binary files
• Control who can gain access to the documents, and
• Control who can modify or ‘change’ a document

By extrapolating this technology and molding around it a customized, logical framework you can build;

• a community based file exchange system,
• a family based web-site enabling family members to share photos, etc.
• hosted services, hosted download sites and so forth.

Therefore, as we go about the process of building the system we need to try to make it relatively foolproof to enable
employees at any level of computer literacy to use the application with a minimum of training. Therefore, our system will
use wizard interfaces where appropriate to ease the learning process.

CCS Developer
Continued on page 12
Language: .ASP
Base: MS Access

CCS Developer Page 11

CCS Components: The CCDLookup Component
Building A CCS Component, continued…

CCSC – Figure 5
<!--
 '********** ==> Routine Begins <== **********
'This routine is used to derive a value from a table in the database.
Dim sResult
Dim lngID
 lngID = Request.QueryString("id")
 If Len(lngID) > 0 Then
 sResult = CCDLookup("FIELD_NAME", "TABLE_NAME", "id=" & CCToSQL(lngID,
"Integer"), DBIntranet)
 End If
FORMNAME.LABEL.value = sResult
'********** ==> Routine Ends <== **********
//-->

Continued from page 9…

Testing The Component

Now we’re ready to test the code.

If you have Code Charge Studio
running, close it down and then re-
start CCS.

Open one of your projects if you like.
We’re going to test our component on
a new page so that we won’t be
interfering with anything important.

Add a new blank page to your CCS.
Save this page as “TestPage”

We’re going to use this as our test
page to ensure the code is being
written as we expect.

Open the ‘TestPage’ page and add a
BeforeShow event to it.

Then click on the HTML tab.

Place your cursor at the end of the
page and hit Enter a few times to give
yourself some room.

Now, place your cursor on the page
and select the CCDLookUp component
from your “Custom” tab.

The code shown in CCSC – Figure 5
will be written out to your HTML page.

Now, highlight the code highlighted in
CCSC – Figure 5 and perform a cut,
placing the code into your clipboard.

Delete what’s left.

Now click to your events page, select
CCSC – Figure 6
Function Page_BeforeShow() 'Page_Befor

'Custom Code @2-73254650
' -------------------------
' Write your own code here.

Dim sResult
Dim lngID
 lngID = Request.QueryString("id

 If Len(lngID) > 0 Then
 sResult = CCDLookup("
 End If

 FORMNAME.LABEL.value = sRes

' -------------------------
'End Custom Code

End Function 'Close Page_BeforeShow @1

Your “TestPage_events” should now look similar to that shown in CCSC – Figure 6.

If you’ve ever attempted to use a component within the _events page before, you
probably received an error message that states “Toolbox is available only in Design or
HTML mode”.

This has not stopped us from utilizing the ‘component’ capabilities however. We simply
have to use the bottom of the HTML page to get CCS to write it out, then do a little
cutting and pasting.

In our next article, we’re going to build a “Component Maker” that will simplify the
process of creating our files and allow us to grab scripts from the internet and
‘generate’ components for those scripts.

This will also apply to our .asp, .php, .net, etc code.

While this was a simple example, we hope that you now have a much better concept of
the Component building process and we hope that we’ve given you some tips along the
way to helping you code more efficiently.

the BeforeShow event and perform a paste.
eShow @1-653D685B

")

FIELD_NAME", "TABLE_NAME", "id=" & CCToSQL(lngID, "Integer"), DBIntranet)

ult

-54C34B28

 P

files that come in the CodeCharge Studio Example Pack. Therefore, when you upload
the tables to SQL Server, MySQL or Oracle, etc – ensure that you do not overwrite
your Users table.
Creating The Database Structure

Such applications are best suited to
the more powerful databases such as
SQL Server, MySQL & Oracle.

Having said that, you’ll be surprised at
the ability of MS Access to handle a
fairly good number of concurrent
users.

So if MS Access is all you have, don’t
let that stop you.

In order to provide for the widest
possible audience, we’re going to build
our application using MS Access.

It is highly recommended however,
that if you are transferring the MS
Access database to a high end
database that you modify the SQL and
code presented in this article to suit
your database and that you create
stored procedures (based on the SQL
provided) to achieve the best possible
performance from your system.

Before We Begin

Before we begin, we need to have a
conception of a number of factors.
Notwithstanding our need to have
adequate programming skills to create
the application, we also need to be
concerned about how the user will
interact with the system.

You could build the most sophisticated
application ever, but if no one could
operate it with efficiency or the
system cannot be understood – it’s
worthless. So we need to build
something that everyone can use
without extensive training. Thus, we
need to make it as intuitive or natural
to the end-user as possible.

The ‘system’ we will build will be
powerful, yet easy to use. It will also
be extensible, meaning that you will
be able to add additional tables to
increase the functionality of the
system to best suit your customers
needs.

Don’t be fooled by ‘ease of use’. More
often than not, an application that is
powerful yet is easy to use takes more
work on the part of the developer
than most end users realize.

Creating The Tables

Included in the source code for this
article is the DocManager.mdb file.

This file contains the base tables that
we will start our project with. As we expand on the Document Manager in
subsequent issues of CCS Developer Magazine, we’ll expand on these tables and add
new ones – increasing the functionality of our system.

For the moment however, the MS Access database file contains three (3) tables;

Users
DocumentManagerDepartments
DocumentManagerUploads

The source code for this article also contains a number of pre-built pages to allow us
to get ‘up and running’ almost immediately.

Setting Up The Project

To set up a connection to the project, create a ODBC DSN named DocManager and
point it to the project files .mdb directory.

For additional help on setting up an ODBC connection you should refer to the
following on-line articles.

CodeCharge Studio KnowledgeBase article 54

Alternatively, you can set up a connection string to acquire access to the database.

In either event, you should be successful in ascertaining a connection to the
database.

Creating The ODBC Connection/DSN

Create a DSN (Data Source Name) on our server so that we can establish an ODBC
connection to the MS Access database.

Create a DSN on your server and call that DSN “DocManager”.

Once you have your connection established, we’re ready to begin.

You will also need to modify the connection string settings in the file dbUpload.asp.
Open this file with your favorite HTML editor and modify the connection string there
as well if necessary.

Security Settings

We have 5 levels of security with level five (5) being the administrator. We may not
need this many, but as our document manager expands, it may be that we will.

If you are modifying this application to suit your special needs, change the levels
accordingly.

Problems With This Method Of Security

Usually, there are no problems with this method for establishing the users access
rights.
Document Manager Tables Description
Users* Table
Needed to ascertain the login parameters and the security level for a given user.
DocumentManagerDepartments Table
Used to hold the names for various ‘area’s’ or departments into which a user can
assign a document.
DocumentManagerUploads Table
Used to hold the binary files and information relating to the binary file.
DocumentManagerUploads2Users Table
Used to hold the values necessary to assign documents to particular individuals.
* Note: The Users table used in this example is a cut-down version of the MS Access
age 12
CCS Developer
Building A Document Management System
Part 1 of a three part series, continued…

http://support.codecharge.com/kb_article.asp?s_keyword=path&s_prod=&kb_articlesPageSize=10&s_type=&order_by=Popularity&s_cat=&article_id=54

 P

The problems generally arise when your application requires a dynamic method based on the page they’re on or the
document they’re attempting to access.

CodeCharge Studio caters to so many of our needs that we find ourselves searching for the dynamic login method in
CodeCharge Studio. But you won’t find it in the previous or current versions.

That may be just as well, because there are a half a dozen ways to implement such a system and quite often, your
application will dictate to a large extent – the method you need to use.

In this series of articles, we’re going to use one of the methods to create a dynamic access capability when it comes to
allowing users to upload, access and manipulate documents.

Creating A Re-usable Upload Wizard

One of the great things about CodeCharge Studio is the ability to point to a database and generate the forms and grids. We
however, will not be doing that.

Because of the various levels of computer literacy one is likely to find in the workplace, we need to keep our application as
simple as possible. Therefore, we will be making extensive use of Wizards in our web application.

By utilizing a wizard interface, we’re going to keep users happy and try not to make more work for ourselves.

How?

There are a lot of benefits to using wizards in the more sophisticated areas of your application. If you use a wizard, the
application can be made ‘self-explanatory’. If you don’t use a wizard for some things, the application can be confusing to the
user and then we have to write help screens. Either way you’re writing. You may as well write the wizard. Furthermore, as
our application grows, we’ll be able to insert additional functionality to the application by including that functionality as an
addition page or sequence of pages within the wizard. This allows us to ask questions and channel the user to a common
sense result. In other words, it allows us to build extendable - ‘logical paths’.

Analysis Of The DocumentManagerUpload Table

The first thing we’re going to do is break the table down into bite-sized chunks. We want the user to follow a process
dictated by our wizard. We also want the user to focus only on one task at a time when they upload a document for the
(Insert) first time. They’ll likely have a slightly different path when they update the document.

Before we write any code however, lets open the database and open the DocumentManagerUpload table in design mode.

We know that “UserID” and “UploadDT” will be populated by the system, so we will create these as hidden fields. The two
hidden fields will be present on the first page of the wizard. We’re also going to add the “Title” and the “Description” field to
the first page of the wizard. This provides a natural starting point for our Upload Wizard.

Remember, the files will be held in a binary format within the database, not physically located on the server’s hard drive.
We will need to be able to search for the document and the next field is called “keywords”. This gives the user the
opportunity to provide keywords used in the document. If you notice however, we’ve created this field as a Memo field.

The reason we did this is because it allows the user to literally paste word documents into the “keywords” field. If you scale
this code up to SQL Server or Oracle, etc., you can create a “Full Text Index” on this field, thereby improving your search
capabilities. By creating this field as a Memo field in our MS Access database, we’ve enhanced the likelihood that the correct
document will be found during a search.

Next, the fields “Data, DataSize, ContentType and SourceFileName” will be handled for us by the upload component.

The file_area field will hold the value representing the department they want to allocate the file to.

In our next issue, we’ll be extending the wizard to allow the user to allocate the file to one or more specific individuals.

And finally, we’ll ask the user if they want to ‘publish’ the document.

By providing a “Publish?” check-box, we allow users to upload files into storage without that file being visible to any other
users. This is good, because it allows a rough draft to be placed in storage for retrieval and updating later.

There’s only one field left, and that’s the ‘times_downloaded’ field. This field will be incremented whenever someone
accesses the file. The code to do this therefore does not reside within the “Upload Wizard” and will be talked about later.

CCS Developer
 age 13
Building A Document Management System
Part 1 of a three part series, continued…

CCS Developer Page 14

Building A Document Management System
Part 1 of a three part series, continued…
Even though we’re using the “Upload Wizard” in a document management system in this
article, you should separate this wizard in your mind from the rest of the application. The
“Upload Wizard” is a write once - use many times application in it’s own right.

The “Upload Wizards” purpose is to allow users to upload files and it knows nothing about
the system it’s plugged in to. Tomorrow you might have to build a family picture sharing
web-site and the “Upload Wizard” will be there for you to use virtually without alteration,
saving you time and allowing you to focus on the surrounding application instead.

If later, you need to add more fields to the DocumentManagerUpload table, you simply
insert another page/step into the upload wizard to accommodate your requirements.

Building The Reusable Upload Wizard

There is no trick to building wizard interfaces really. However to build them you do need
to make sure that the table allows a record to be created with only one or more fields to
be filled in at a time. In other words, all fields except the critical ones - must accept
NULL values. If you have any fields that do not allow NULL fields, then those fields need
to be on the first page of the upload wizard.

For our DocumentManagerUpload table to allow a wizard interface, all fields will be NULL
except for the “UserID, UploadDT and Title” field.

Since the “Title” field must have a value to insert the record, that field is appropriately on
the first page of our wizard.

We also need to capture the Users ID and the current date/time within hidden fields.
This is important, because when the user clicks over to page 2 of the Wizard, we’re going
to check that the User_ID in the table matches the session(‘user_id”) for the record the
user just inserted and whether the document id being passed in the querystring is owned
by the user.

If we didn’t do this, anyone could simply modify the UploadID passed in the
URL/Querystring and gain access to some one else’s file. This would not be good.

If someone comes along afterwards and plays with the querystring values we’ll send the
user to our AccessDenied page.

Building The Upload Wizard Entry Point

When the user fills in the “Title” field and clicks submit, an insert is performed. Every
page of the wizard after the first page performs an update to the record. Therefore, we
need to add some code in the After_Insert event to derive the Autonumber or IDENTITY
field. We will then pass the Autonumber/IDENTITY field to the next and subsequent
pages.

If the record id does not get passed to the subsequent pages, the update (submit) button
will not be visible. This is generally a clear indication that the record id – in this case
“UploadID” was not passed to the page.

Open the DocumentManagerTitle.ccp file and navigate to the After_Insert event for the
record.

You’ll notice that the code required to get the Auto-number from an MS Access database.
We’ve also added the code to derive the @@IDENTITY from MS SQL Server. The
CodeCharge Studio help file (F1) demonstrates these as well as examples for databases
other than MS Access and MS SQL Server.

Open the default.ccp file. You’ll notice that we’ve only placed the critical fields on the
first page of the wizard. Refer to figure DMS-1.

The user has to enter the title and description of the file. The user_id will be saved in a
hidden field as well as the date the file was uploaded.

Denying Access

Since we need the userid, the user must be logged in to access the page.

If they’re not logged in, we need
to tell the user that they need to
login in order to access the page.
Therefore we’re going to set
security for the page and we need
to have an Access Denied form to
let the user know what’s going
on.

Open the AccessDenied page.
The user will be directed to this
page if they have not acquired a
session via the login.

While we’re at it, open the
InsufficientAccess page. This
page will be used to advise the
user in the event that they are
logged in, but their access rights
are not sufficient to perform the
action they attempted.

This will be important later when
we build the document
management logic into the
application.

Refer to figure DMS-2 for the
datasource Where clause settings.

Allowing The User To Add
Keywords

We need to allow users to search
for the documents held in a
binary format in the “Data” field.

This page of the wizard allows the
user to add keywords and even
full documents.

In the case of an MS Word
document for instance, the user
could copy and paste the entire
document into the field.

In the case of an image file being
uploaded, the user may choose
only to add a ten or twenty word
explanation.

Step 2 of the wizard therefore
involves providing the user with
the opportunity to make the
document or other binary file –
‘searchable’.

By maintaining the user to using
a ‘TextArea’ field, we prevent rich
text and embedded images from
being placed within the
‘Keywords’ field.

If you need this capability in your
application you can incorporate a
rich text capable web based
editor such as FCKEditor in this
step of the wizard.

 P

Need help with a project
you’re trying to complete?

Post you project on the CCS
Developer Job Board Today!

DMS-2

Adding The Rich Text FCKEditor

The FCKEditor can be found at http://www.fckeditor.net/

There is a new version in Beta release at the moment, so
we’re going to plug in an earlier version in this article. When
the new version comes out of Beta mode, we’ll show you how
to integrate the new version in a future article.

If you need more assistance with the FCKEditor you should
visit their web site for documentation and additional examples.

This wizard is going to use a Frame to act as a container for
the WYSIWYG Editor.

There are two (2) ways we can plug the frame into our page.

We can

• write iFrame code directly into the html page, or
• we can add a label and use the before show event to

produce the iFrame code.

In this article we’re going to demonstrate the technique of
using a label to produce code and display it.

This technique can be used for a lot of different scenarios, so
it’s important to know how to do it (it’s easy).

Sometimes, if you paste certain code into the CodeCharge
Studio HTML editor, it will disrupt the carriage returns and
everything will end up in one long line of code.

You can also place your code between <!-- --> tags and this
will usually keep the sentences formatted as you’d expect.

But there are also more subtle reasons for using the label field
in this way.

This technique also allows you to programmatically create an
iFrame or some other object according to user rights. But
we’ll address that in a future article.

Click on the {Description1} text area, perform a right click and
select “Change To” Hidden. Move the Hidden Description1
field out of the way. We placed it after the Title Field.

Next add a label field and give it the name lblWYSIWYG.
While still on the label, click the events tab, perform a right
click and “Add Code” to the Before_Show() event.

Take a look at the code that we added to the
DocumentManager_Default_events.asp page for the
Before_Show() event.

Essentially all the code does is replicate what we’d otherwise
type into the HTML page and assign it to the label.

The FCKEditor directory is located as a sub-directory of the
DocumentManager Directory and loads into the iFrame
accordingly.

If you decide to copy and paste this routine into applications
you’re writing with CodeCharge Studio, you only need to
alter the FieldName=”YOURFIELDNAME” portion of the line
and perhaps the Browse and Upload Boolean values.

[?FieldName=Keywords&Upload=true&Browse=true]

That’s all there is to adding the FCKEditor to your MEMO and
TEXT fields.

Uploading The File To The Database
CCS Developer
 age 15
Building A Document Management System
Part 1 of a three part series, continued…
DMS-1

Page 16CCS Developer

Building A Document Management System
Part 1 of a three part series, continued…

There are two (2) ways for using the
non-COM based file upload component
that ships with CodeCharge Studio.

One methods allows you to perform a
script based upload and the other
method allows you to perform an
ADO.Stream based file upload.

In both cases it appears that the
component requires your server to
have a temporary directory into which
the file is initially loaded and a
‘permanent’ directory into which the
file is subsequently moved if it passes
validation.

However, there are times when the
application will require that the Upload
component must upload the file
directly into a field in a database
table. The reasons can range from
the need for additional security or
simply because the ISP that hosts
your site is unwilling to allow sufficient
permissions to the necessary
directories.

Furthermore, if you do have sufficient
permissions on these directories, you
may be concerned that the directories
could be discovered and in one way or
another compromised.

As a result of this concern, you have
probably adjusted your component to
disallow the uploading of certain types
of files, especially .exe, .com, .bat
files and so forth. And you would be
correct to have done so.

Still, there will be times when a
system requires a higher level of
security or the ability to upload the
executable type files. And thus make
it harder for a hacker to compromise
your web sites security measures.

Uploading the file directly to the
database and downloading the file
directly from the database may by
your only choice.

Since CodeCharge Studio comes with
sufficient information about their
upload component, our application is
going to use a different one.

The component we’re going to use is a
free Upload component called
PureASPUpload. This component is
apparently capable of uploading files
up to 2 GIG in size.

Normally however, this limitation is no
limitation at all.

This component can be downloaded
from
http://www.ormacdigital.com/pureaspup
load/help/default.htm

They also sell another product called
HUGE-ASP Upload that allows you to
upload files larger then 2 GIG.

Note: Downloading documents, images
and other binary files from your
database can cause a strain on both the
database and your bandwidth.
Unfortunately, reality often dictates
things and we have no choice but to
perform uploads directly to a table.

Since this component allows files to be
uploaded directly to a database field and
is free, it’s a likely choice to use until the
CodeCharge Studio component provides
similar functionality.

Using PureASP Upload

All of the necessary files have been
include along with the CCS Source code
for this article.

When you download the PureASP Upload
zip file, the pureupload.asp file and
others are contained inside. Therefore,
it is recommended that you do not
modify the pureupload.asp file.

We chopped down/modified one of the
example files and renamed it to
dbUpload.asp

Using your favorite HTML editor, open
the dbUpload.asp file.

The dbUpload.asp file references an
include: <!--#INCLUDE
FILE="./pureupload.asp"-->

Again, there is no need to modify the
pureupload.asp file.

In this issue we’re not going to restrict
the types of files we can upload. Since
the files are being uploaded to a table
within a database we can be less
restrictive.

We should however limit the size of the
file that can be uploaded. Located at or
about line 35 you’ll see two (2) lines of
code that you will need to modify if you
want to alter the allowable file size.

Server.ScriptTimeout = 10000
Form.SizeLimit = 1024*1024*2
 '1MB=1024*1024

We’ve set the file size limit to
2MB.

As you increase the file size you
may also need to increase the
Server.ScriptTimeout value.

We’ve set the
Server.ScriptTimeout a little
higher than one might expect to
see.

Adjust this setting according to
your needs. Just remember that
if some or many of your users
access your site using a 56k dial-
up connection, you’ll need to keep
the Time out set to accommodate
them – or their session will time
out part-way through the upload.

We’ve also taken the liberty to
simplify the set-up required to
integrate these files into your
existing applications.

At the top of the dbUpload.asp
page, you’ll find a few variables
that you may need to alter should
you transfer these files to one of
your own projects.

Deleting The File Without
Deleting The Record

To delete the file without deleting
the entire record, we’re going to
create a separate page.

Assigning The Department

After the file is uploaded, the
wizard takes our user to the page
that allows the user to assign the
file to a department.

The department could represent
an actual department of an
organization or it could represent
a category.

What-ever it represents within
the context of your application,
name it accordingly.

If you don’t need to break the file
down in this fashion, simply
remove this step from the wizard.

After assigning the file to a
department, the user is take to

 P

P

V

T
w

the List Of Files page.

The List Of Files Page

We didn’t include the keywords field on the grid because if a user copied and pasted an 18 page report into the system, the
grid would scroll for a long way indeed.

Instead, we’ve added the fields that you’re most interested in seeing populated by the wizard.

We also created an additional page to handle the various types of actions that a user can take with the document. As our
article progresses in future articles this capability will be enhanced and the list of options will grow.

Wrapping Up

At this point in our application we have addressed the core functionality required to upload files to our database.

In our next issue, we’ll be expanding on both the number of options the user will have as well as implementing the dynamic
‘rights’ each user will have for a given document.

We’ve demonstrated how to use the FCKEditor to add rich text capabilities to your application and we’ve demonstrated a
number of techniques that we’ll use to good effect as we continue building the application.
CCS Developer

lease visit us again at http://www.dataobjx.net and subscribe to CCS Developer Magazine.

ery soon now, DataObjx will be posting information about our next issue.

hank-you for downloading this free issue of CCS Developer Magazine – The first magazine aimed at improvi
ay you use CodeCharge Studio.
age 17
Building A Document Management System
Part 1 of a three part series, continued…
ng the

